III B.Tech II Semester(R07) Regular \& Supplementary Examinations, April/May 2011
LINEAR \& DISCRETE SYSTEMS ANALYSIS
(Electrical \& Electronics Engineering)
(For students of RR regulation readmitted to III B.Tech II Semester R07)
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1. (a) Define the following:
i. State variables
ii. State vector.
(b) State the properties of state transition matrix
(c) Obtain the state equation of the system for the network as shown in figure 1.

Figure 1:
2. (a) Discuss the effective value of a periodic non-sinusoidal waveform.
(b) Determine the Fourier series of voltage response obtained at the output of a half wave rectifier shown in figure 2.

Figure 2:
3. (a) State and prove convolution and differentiation properties of F.T
(b) Find the F.T of the signum function and plot its amplitude and phase spectrum.
4. (a) Write short notes on "convolution Integral".
(b) What is ROC for L.T? Explain the properties of ROC.
5. (a) Check if the polynomial $H(s)=2 s^{4}+5 s^{3}+6 s^{2}+2 s+1$ is Hurwitz or not.
(b) Check whether the function $N(s)=\frac{2 s^{2}+2 s+1}{s^{3}+2 s^{2}+s+2}$ is a positive real function.
6. An LC driving point impedance function has infinite impedance at 1000 Hz and 4000 Hz , and the impedance is zero at 2500 Hz . The impedance at 500 Hz is $1 k \Omega$. Find the driving point impedance function which satisfies the above criteria.
7. (a) Derive the power density spectrum of a periodic signal.
(b) Find the power of a signal $A+f(t)$, where A is a constant and the signal $f(t)=\sin t$.
8. Using the power series expansion, find the inverse Z-transform of the following $\mathrm{X}(\mathrm{z})$:
(a) $X(z)=\log \left(\frac{1}{1-a^{-1} z}\right),|z|<|a|$
(b) $X(z)=\frac{z}{2 z^{2}-3 z+1},|z|<1 / 2$.

